Identification of Arg-30 as the Essential Residue for the Enzymatic Activity of Taiwan Cobra Phospholipase A_2^{1}

Long-sen Chang,² Shinne-ren Lin, and Chun-chang Chang

Department of Biochemistry, Kaohsiung Medical College, Kaohsiung, Taiwan

Received for publication, May 18, 1998

Taiwan cobra (Naja naja atra) phospholipase A_2 (PLA₂) was inactivated by argininespecific reagents, phenylglyoxal and 1,2-cyclohexanedione. Kinetic analyses of the modification reaction revealed that the inactivation of PLA₂ followed pseudo-first-order kinetics and the loss of activity was correlated with the incorporation of one molecule of modification reagent per PLA₂ molecule. This was confirmed by the results of amino acid composition determination, that showed that a marked decrease in enzymatic activity was associated with the modification of one arginine residue. Tryptic cleavage of the modified protein and microsequencing revealed that Arg-30 was the functionally essential residue. The incorporation of a modifier into the PLA_2 did not significantly affect the secondary structure of the enzyme, as revealed by the CD spectrum, and Ca²⁺-binding of the modified PLA_2 was unaffected. Nevertheless, the nonpolarity of the active site of PLA_2 markedly decreased with the arginine modification, as evidenced by the decreases in the enhancement of Trp and 8-anilinonaphthalene sulfonate fluorescence. These results, together with those of X-ray crystallographic analysis of N. naja atra PLA₂ [Scott et al. (1990) Science 250, 1541-1546], demonstrate that Arg-30 is one of the residues involved in the interfacial binding of a PLA₂ molecule with its substrate.

Key words: phospholipase A₂, modification of an arginine residue, nonpolarity of the active site, snake venom.

The enzyme, phospholipase A_2 (PLA₂, EC 3.1.1.4), is found in various species in the animal kingdom, notably in the pancreatic tissues of mammals, and the venom of snakes and bees. It specifically catalyzes the hydrolysis of the fatty acid ester bond at position 2 of 1,2-diacyl-*sn*-phosphoglycerides in the presence of Ca²⁺ (1).

Taiwan cobra (Naja naja atra) PLA₂ is an acidic single chain polypeptide consisting of 119 amino acid residues (2). X-ray crystallographic analysis has provided a model of its three-dimensional structure, and revealed a probable mechanism for its interfacial catalysis (3, 4). Scott et al. suggested that residues Leu-2, Tyr-3, Lys-6, Ile-9, Trp-18, Arg-30, and Tyr-63 constituted the hydrophobic channel involved in the interaction of an enzyme molecule with a phospholipid/substrate (4). The results of chemical modification studies were in line with this proposition, indicating that intact Tyr-3, Lys-6, Trp-18, and Tyr-63 of N. naja atra PLA₂ are critical for its activity (5-8). In contrast to the results of a number of studies on other functional side-chains, little information is available on the involvement of Arg residues in PLA₂ activity. The inactivation of porcine pancreatic PLA₂ by phenylglyoxal revealed that a single arginine was necessary for its activity (9), and that this arginine-specific reagent was mostly incorporated at

Arg-6 (10). Noticeably, the residue corresponding to Arg-30 in N. naja atra PLA₂ is Leu-31 in porcine pancreatic PLA₂ (1). Although the modification of arginine residues of N. naja atra PLA₂ was carried out by Yang et al. (11), there have been no lines of evidence supporting the functional involvement of Arg-30 in its enzymatic activity. To resolve this problem, the modification of PLA₂ with arginine specific reagents was undertaken in the present study. Our data demonstrate, for the first time, that the integrity of Arg-30 is essential for maintenance of the nonpolarity of the active site of PLA₂, and is closely associated with the catalytic activity of PLA₂. The results are presented in this report.

MATERIALS AND METHODS

Phospholipase A_2 (PLA₂) was purified from *N. naja atra* venom according to the method previously described (12, 13). 1,2-Cyclohexanedione, phenylglyoxal, and 8-anilino-naphthalene sulfonate (ANS) were purchased from Sigma Chemical. SynChropak RP-P (46 mm \times 25 cm) was purchased from SynChrom (Lafayette, IN, USA). All other reagents were of analytical grade.

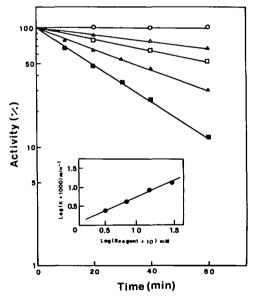
Chemical Modification of Arginine Residues with Phenylglyoxal—One micromole of PLA_2 in 7 ml of 0.1 M sodium bicarbonate (pH 8.5) was incubated with a 12-fold molar excess of phenylglyoxal. After 20, 40, 80, and 120 min, samples were withdrawn and then desalted by passage through a Sephadex G-25 column equilibrated with 0.1 M acetic acid.

For kinetic analyses, PLA₂ (0.21 mg/ml) was incubated

¹ This work was supported by Grant NSC88-2316-B037-002 from the National Science Council, ROC (to L.S. Chang).

² To whom correspondence should be addressed. Fax: +886-7-3218309, E-mail: lschang@mail.nsysu.edu.tw

^{© 1998} by The Japanese Biochemical Society.


with 0.4, 0.8, 1.5, and 3 mM phenylglyoxal, respectively. At appropriate time intervals, samples were withdrawn for measurement of enzymatic activity.

Modification of Arginine Residues with 1,2-Cyclohexanedione—PLA₂ was modified with 1,2-cyclohexanedione according to the method described by Patty and Smith with a slight modification (14). PLA₂ (0.42 mg/ml) in 50 mM sodium borate buffer (pH 8.5) was incubated with 30, 40, 60, and 120 mM 1,2-cyclohexanedione, respectively. At appropriate time intervals, samples were withdrawn for determination of the residual activity.

Identification of the Modified Arginine Residues—To determine the positions of the arginine residues modified in the sequence of PLA₂, the phenylglyoxal-modified enzyme was reduced and S-carboxymethylated (RCM) according to the procedures described by Chang *et al.* (7), followed by tryptic digestion. The RCM-protein was dissolved in 0.2 M ammonium bicarbonate (pH 7.8) and then trypsin was added (40:1, w/w). Digestion was carried out at 37°C for 4 h and the hydrolysate was lyophilized. The tryptic hydrolysate was separated by HPLC on a SynChropak RP-P column (4.6 mm $\times 25$ cm) equilibrated with 0.1% trifluoroacetic acid (TFA) and eluted with a linear gradient of 12– 50% acetonitrile for 90 min. The flow rate was 0.8 ml/min, and the effluent was monitored at 230 nm.

Native Gel Electrophoresis—Gel electrophoresis on a 7% polyacrylamide gel (pH 8.9) was carried out as described by Gabriel (15). Electrophoresis was performed at 25°C by applying a current of 15 mA/gel for 80 min. The gel was stained with 0.2% Coomassie Brilliant Blue R-250 and destained with 10% acetic acid containing 10% methanol.

Other Tests-PLA₂ activity determination amino acid

analysis and sequence determination, fluorescence measurement and CD measurement were performed in essentially the same manners as previously described (12, 13, 16-19).

RESULTS AND DISCUSSION

Bifunctional ketones, e.g. phenylglyoxal and 1,2-cyclohexanedione, are known to specifically react with arginine residues in proteins (20). As shown in Fig. 1, the incubation of PLA₂ with phenylglyoxal resulted in a time- and concentration-dependent loss of enzymatic activity. Moreover, the inactivation with phenylglyoxal followed pseudo-firstorder kinetics. A semilogarithmic plot of the inactivation constant (k, \min^{-1}) versus the concentration of phenylglyoxal has a slope of 0.81, indicating that a single phenylglyoxal molecule is required to inactive the enzyme. This result could be interpreted as that only one arginine residue in PLA₂ modified by phenylglyoxal is associated with its enzymatic activity. Likewise, the loss of activity was also dependent on the concentration of 1,2-cyclohexanedione, and followed pseudo-first-order kinetics (Fig. 2). A plot of the inactivation constant (k, \min^{-1}) against the concentration of 1,2-cyclohexanedione has a slope of 1.04. This again indicates that one arginine residue is essential for PLA₂ activity. The second-order rate constants for the inactivation of PLA₂ by phenylglyoxal and 1,2-cyclohexanedione were 4.10 and 0.13 M⁻¹·min⁻¹, respectively. Hence the reactivity toward PLA₂ is much higher for phenylglyoxal than 1,2-cyclohexanedione.

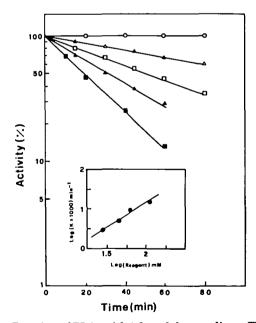
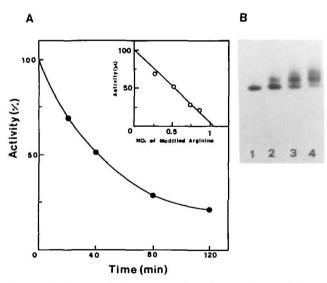



Fig. 1. Inactivation of PLA₂ by phenylglyoxal. The reaction was monitored as to the loss of enzymatic activity and the data are presented in a semilogarithmic manner. The modification was carried out at 25°C in 0.1 M sodium bicarbonate buffer (pH 8.5). The PLA₂ concentration in each reaction was 0.21 mg/ml. The phenylglyoxal concentrations in the various runs were: $(\bigcirc 0, (\triangle) 0.4, (\bigcirc 0.8, (\triangle) 1.5, and (\blacksquare) 3.0 mM, respectively. Inset: Plot of the log of the pseudo-first-order rate constant, k, of the phenylglyoxal inactivation reaction versus the log of the phenylglyoxal concentration. The rate constants were determined from individual runs by linear least squares analysis.$

Fig. 2. Reaction of PLA₂ with 1,2-cyclohexanedione. The reaction was monitored as to the loss of enzymatic activity and the data are presented in a semilogarithmic manner. The modification was carried out at 25°C in 50 mM sodium borate buffer (pH 8.5). The PLA₂ concentration in each reaction was 0.42 mg/ml. The 1,2-cyclohexaned dione concentrations in the various runs were: $(\bigcirc) 0$, $(\triangle) 30$, $(\bigcirc) 40$, (\triangle) 60, and (\bigcirc) 120 mM, respectively. Inset: Plot of the log of the pseudo-first-order rate constant, k, of the 1,2-cyclohexanedione in activation reaction *versus* the log of the 1,2-cyclohexanedione concentration. The rate constants were determined from individual runs by linear least squares analysis.

PLA₂ was incubated with a 12-fold molar ratio of phenylglyoxal in sodium bicarbonate buffer (pH 8.5), and samples were withdrawn for analysis after 20, 40, 80, and 120 min, respectively. The enzymatic activity decreased with time (Fig. 3A). After reaction for 120 min, the residual activity was approximately 25% of the original level. The results of amino acid analysis showed that, with the exception of arginine residues, the contents of all amino acid residues remained essentially unchanged (data not shown). The data were plotted as the residual activity versus the number of modified arginine residues, which showed that about one arginine residue per PLA₂ molecule was correlated with the loss of PLA₂ activity (inset of Fig. 3A). As can be seen in Fig. 3B, a novel species exhibiting much slower electrophoretic mobility than the native enzyme appeared on inactivation of PLA₂ with phenylglyoxal. Meanwhile, the amount of this novel component increased with increasing reaction time. However, other modified derivatives appeared after prolonged incubation with phenylglyoxal. Since the pI values of the native and modified PLA₂ differed, as evidenced by the results of gel electrophoresis (Fig. 3B), efforts were made to separate the modified PLA₂ from the native enzyme by ion-exchange chromatography on a CM-52 or DE-52 column (Whatman International). The modified derivatives were applied on a CM-52 column $(2 \times 25 \text{ cm})$ equilibrated with 0.05 M ammonium acetate (pH 5.0), and eluted with a linear gradient of 350 ml of 0.05 M (pH 5.0) to 0.5 M ammonium acetate (pH 6.8) at the flow rate of 30 ml/h. Although a major peak was obtained with this purification process, both the native and modified PLA, were present in this fraction. as revealed by the results of gel electrophoresis (data not shown). Alternatively, the modified derivatives were applied on a DE-52 column (2×25 cm) equilibrated with 20

mM Tris (pH 8.0), and eluted with a linear gradient of 350 ml of 0 to 0.6 M NaCl in the same buffer at the flow rate of 30 ml/h. Separation of the native PLA₂ from the Argmodified PLA₂ was also not successfully achieved. Thus, modified samples were directly analyzed without further separation. Samples were withdrawn after 20, 40, and 120 min, respectively, and then subjected to reduction and S-carboxymethylation, followed by tryptic digestion. The hydrolysates were separated by HPLC on a SynChropak RP-P column and the elution profiles are shown in Fig. 4. Instead of peak a observed for the hydrolysate of native PLA₂, a new peak, b, appeared for the hydrolysate of the modified PLA₂, and its size increased in parallel with a decrease in that of peak a. The results of amino acid analysis and sequence determination showed that peak a represented the peptide segment comprising positions 17-30 of PLA₂, the sequence being SWWDFADYGCYCGR. Peak b, corresponding to the sequence (SWWDFADYGCY-CGRGGSGTPVDDLDR) of PLA₂ comprising positions 17-42, contained a modified arginine residue at position 30. Thus, the peak b material consisted of the peak a material and the segment comprising positions 31-42. However, no peptide fragment representing the sequence comprising

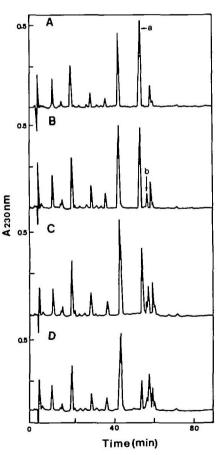


Fig. 3. Analyses of Arg-modified PLA₂ reaction mixtures. PLA₂ (2 mg/ml) in 0.1 M sodium bicarbonate buffer (pH 8.5) was incubated with a 12-fold molar ratio of phenylglyoxal. A: The change in the enzymatic activity as a function of the reaction time. Inset: Correlation of the inactivation of PLA₂ with the number of arginine residues modified. B: Electrophoresis analyses of the Arg-modified PLA₂. Lane 1, PLA₂; lanes 2-4, samples withdrawn from the reaction mixtures after 20, 40, and 120 min, respectively.

Fig. 4. Separation of tryptic peptides from the native and modified PLA₂. The conditions for preparation of the Arg-modified derivatives were essentially the same as given in Fig. 3. The native PLA₂ (A) and Arg-modified PLA₂ (B, 20 min; C, 40 min; D, 120 min) were subjected to reduction and S-carboxymethylation, followed by tryptic digestion. The tryptic hydrolysates were separated on a SynChropak RP-P column (4.6 mm \times 25 cm) and eluted with a linear gradient of 12-50% acetonitrile over 90 min.

positions 31-42 of PLA_2 simultaneously disappeared on tryptic peptide mapping with the inactivation reaction. Probably, this segment was co-eluted with other tryptic peptides, and thus no appreciable change was noted. Nevertheless, our results indicate that the loss of PLA_2 activity is related to the modification of Arg-30.

ANS is essentially non-fluorescent in an aqueous solution and becomes appreciably fluorescent in an apolar environment (21, 22). The binding of apolar ANS to PLA_2 is accompanied by enhanced fluorescence and a blue shift in the maximum emission wavelength from 520 to 460 nm (23-25). The binding of Ca²⁺ is associated with a further increase in fluorescence of the ANS-enzyme complex, the maximum enhancement being observed at 20 mM Ca²⁺. The Ca^{2+} -enzyme interaction can be monitored as the change in the emission intensity of the ANS-enzyme complex caused by the addition of Ca^{2+} (inset of Fig. 5). The association constants for Ca²⁺ calculated from the lines were 1.39 and 1.1 mM, respectively. Although the Ca²⁺binding constant was calculated from the changes in the ANS fluorescence enhancement, the result was not significantly different from that determined from the UV difference spectra induced by the addition of $Ca^{2+}(5)$. Therefore, the determination of Ca²⁺-binding by monitoring ANS fluorescence could well reflect the binding ability of PLA2 as to Ca²⁺. It is evident that the binding affinity for Ca²⁺ is not impaired on modification with phenylglyoxal. Thus, the loss of biological activity was not related to Ca²⁺-binding. However, a decrease in the ability to enhance ANS fluores-

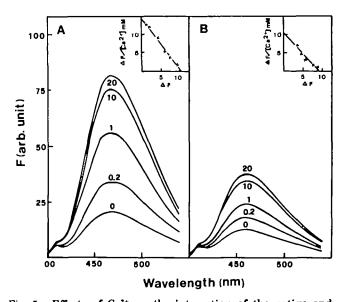
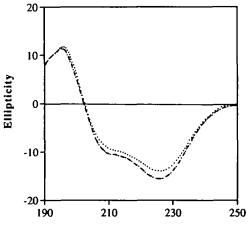



Fig. 5. Effects of Ca^{2+} on the interaction of the native and modified PLA₂ with ANS. The Arg-modified PLA₂ was prepared by incubation of PLA₂ with a 12-fold molar ratio of phenylglyoxal for 120 min. The sample cuvettes contained 0.105 mg of (A) native PLA₂ or (B) modified PLA₂ per ml of 0.025 M Tris-0.1 M NaCl (pH 8.0) and 7.5 μ M ANS in the presence of various concentrations of Ca^{2+} (mM), as indicated. Inset: A plot of the intensity of fluorescence, ΔF , versus $\Delta F/[Ca^{2+}]$ gives a line with a slope corresponding to the association constant of the enzyme molecule for Ca^{2+} . The straight lines were determined by the linear regression method. Since the concentration of Ca^{2+} present was in a great excess over that of the enzyme molecule, the enzyme-bound Ca^{2+} concentration is neglected. Thus, the free $[Ca^{2+}]$ is assumed to be the initial concentration of Ca^{2+} .

cence was observed for phenylglyoxal-inactivated PLA₂. Since the hydrophobic pocket of N. naja atra PLA₂ for binding with ANS is its active site (21, 22), the decrease in the nonpolarity of the ANS-binding site may reflect that the hydrophobic character of the active site was perturbed on the modification of Arg-30. Moreover, the intensity of Trp fluorescence of PLA₂ decreased on phenylglyoxal inactivation (data not shown). In terms of the observations that the Trp residues of PLA₂ were crucial for the interaction of an enzyme molecule with its substrate and were in proximity to the active site (7), the decrease in the Trp fluorescence enhancement again reflected that the nonpolarity of the active site was perturbed by the modification of Arg-30. Nevertheless, the secondary structure of PLA₂ did not change significantly on modification, as evidenced by the CD spectrum of phenylglyoxal-modified PLA₂, which exhibited almost the same profile as that of the native enzyme (Fig. 6). Therefore, the observed decrease in PLA₂ activity could be exclusively attributed to the modification of Arg-30.

The modification of Arg residues in N. naja atra PLA_2 had been carried out previously (11), and the results showed that Arg-16 and Arg-117 were the modified residues. The discrepancy between their results and ours probably arose from the reaction buffer conditions being different. In fact, a significant buffer effect on the Argmodification reaction had been reported (20). In the present study, it was found that the inactivation of PLA_2 by phenylglyoxal is correlated with the extent of modification of Arg-30, showing that Arg-30 is essential for the activity of PLA₂. Although the gross conformation of PLA₂ is not drastically affected by modification with phenylglyoxal, as revealed by the CD spectrum, the decrease in the nonpolarity of active site is notable. This implies that Arg-30 should be situated in the vicinity of the active site. This is supported by the suggestion that Arg-30 is one of the residues constituting the hydrophobic channel for facilitated diffusion of a substrate/phospholipid into the catalytic site of PLA_2 (3, 4). Comparative analyses of the sequences

Wavelength

Fig. 6. CD spectra of the native and modified PLA_2 and --represent the native PLA_2 and Arg-modified PLA_2 , respectively. The Arg-modified PLA_2 was prepared by incubation of PLA_2 with a 12fold molar ratio of phenylglyoxal for 120 min as described under "MATERIALS AND METHODS."

of PLA₂ enzymes revealed that the residue located at the homologous position to Arg-30 is a positively charged residue (Arg or Lys) or a hydrophobic residue (1). In particular, Arg-30 is highly conserved in PLA₂ enzymes from Naja species. Based on these observations, it is likely that the functional involvement of Arg-30 in PLA₂ activity is associated with its aliphatic moiety rather than its guanidino group. This proposition was supported by the finding that the substitution of Leu-31 of porcine pancreatic PLA₂ (which corresponds to Arg-30 of *N. naja atra* PLA₂) with Trp or Phe by site-directed mutagenesis notably increased its affinity for a monomeric substrate (26). Thus, it is conceivable that modification of Arg-30 might directly perturb the hydrophobic channel of PLA₂, and thereby cause a loss of enzymatic activity.

The authors wish to express their sincere gratitude to Professor C.C. Yang, Department of Life Sciences, National Tsing Hua University, for his encouragement during this study.

REFERENCES

- 1. Waite, M. (1987) *Phospholipase*, pp. 155-241, Plenum Press, New York
- Pan, F.M., Yeh, M.S., Chang, W.C., Hung, C.C., and Chiou, S.H. (1994) Sequence analysis and expression of phospholipase A₂ from Taiwan cobra. *Biochem. Biophys. Res. Commun.* 199, 969-976
- White, S.P., Scott, D.L., Otwinowski, Z., Gelb, M.H., and Sigler, P.B. (1990) Crystal structure of cobra venom phospholipase A₂ in a complex with a transition state analogue. *Science* 250, 1560-1563
- Scott, D.L., White, S.P., Otwinowski, Z., Yuan, W., Gelbs, M.H., and Sigler, P.B. (1990) Interfacial catalysis: The mechanism of phospholipase A₂. Science 250, 1541-1546
- Yang, C.C., Huang, C.S., and Lee, H.J. (1985) Studies on the status of tyrosyl residues in phospholipase A₂ from Naja naja atra and Naja nigricollis snake venoms. J. Protein Chem. 4, 87-102
- Yang, C.C. and Chang, L.S. (1989) Studies on the status of lysine residues in phospholipase A₁ from Naja naja atra (Taiwan cobra) snake venom. Biochem. J. 262, 855-860
- Chang, L.S., Kuo, K.W., and Chang, C.C. (1993) Identification of functional involvement of tryptophan residues in phospholipase A₁ from Naja naja atra (Taiwan cobra) snake venom. Biochim. Biophys. Acta 1202, 216-220
- Chang, L.S., Hung, J.J., Lin, S.R., and Chang, C.C. (1994) Chemical modification of Lys-6 in Taiwan cobra phospholipase A₁ with 4-chloro-3,5-dinitrobenzoate. *Biochem. Mol. Biol. Int.* 33, 1207-1213
- Vensel, L.A. and Kantrowitz, E.R. (1980) An essential arginine residue in porcine phospholipase A₂. J. Biol. Chem. 255, 7306-7310
- Fleer, D.A.M., Puijk, W.C., Slotboom, A.J., and de Haas, G.H. (1981) Modification of arginine residues in porcine pancreatic phospholipase A₂. Eur. J. Biochem. 116, 277-284
- 11. Yang, C.C., Yuo, T.S., and Chen, C.Y. (1997) Studies on the

status of arginine in phospholipase A_2 from Naja naja atra (Taiwan cobra) snake venom in *Techniques in Protein Chemistry* (Marshak, D.R., ed.) Vol. VIII, pp. 267–275, Academic Press, New York

- Chang, L.S., Lin, S.R., and Chang, C.C. (1997) Probing calcium ion-induced conformational changes of Tsiwan cobra phospholipase A₂ by trinitrophenylation of lysine residues. J. Protein Chem. 16, 51-57
- 13. Chang, L.S., Lin, S.R., and Chang, C.C. (1997) The structural variations of ε -amino groups in phospholipase A₂ enzymes from Naja naja atra and Bungarus multicinctus venoms. J. Protein Chem. 16, 133-136
- Patty, L. and Smith, E.L. (1975) Identification of a functional arginine residue in ribonuclease A and lysozyme. J. Biol. Chem. 250, 565-569
- Gabriel, O. (1971) Analytical disc gel electrophoresis. Methods Enzymol. 22, 565-578
- Chang, L.S. (1996) Chemical modification of notexin from Notechis scutatus scutatus (Australian tiger snake) venom with pyridoxal-5'-phosphate. J. Protein Chem. 15, 473-480
- Chang, L.S. and Yang, C.C. (1993) Structural determinants of the intrinsic fluorescence emission in notexin and phospholipase A₂ enzymes. J. Protein Chem. 12, 579-583
- Chang, L.S., Wu, P.F., and Chang, C.C. (1996) Expression of Taiwan banded krait phospholipase A₂ in *Escherichia coli*, a fully active enzyme generated by hydrolyzing with aminopeptidase. *Biochem. Biophys. Res. Commun.* 225, 990-996
- 19. Chang, L.S., Chang, C.C., and Wu, P.F. (1997) The structural and functional essentiality of the N-terminal α -helix in the phospholipase A₂ of the Taiwan banded krait. *Biochem. Mol. Biol. Int.* 41, 1247-1253
- Lundblad, R.L. and Noyes, C.M. (1984) The modification of arginine in *Chemical Reagents for Protein Modification*, Vol. II, pp. 1-46, CRC Press, Florida.
- Chang, L.S., Wen, E.Y., and Chang, C.C. (1996) The essentiality of His-47 and the N-terminal region for the binding of 8-anilinonaphthalene-1-sulfonate with Taiwan cobra phospholipase A₂. J. Protein Chem. 15, 255-260
- Chang, L.S., Wen, E.Y., and Chang, C.C. (1996) The structural elements of phospholipase A₂ affecting the enhancement of 8anilinonaphthalene-1-sulfonate fluorescence. *Biochem. Mol. Biol. Int.* 38, 617-623
- Chang, L.S., Lin, S.R., and Chang, C.C. (1996) The essentiality of calcium ion in the enzymatic activity of Taiwan cobra phospholipase Az. J. Protein Chem. 15, 701-707
- Chang, L.S., Chou, L., Lin, S.R., and Chang, C.C. (1996) The interaction of 8-anilinonaphthalene-1-sulfonate with His-47 of Taiwan cobra phospholipase A₂ perturbing by the binding of calcium ion. *Biochem. Mol. Biol. Int.* 39, 335-342
- Chang, L.S. and Lin, S.R. (1996) Modification of tyrosine-3(63) and lysine-6 of Taiwan cobra phospholipase A₂ affecting its ability to enhance 8-anilinonaphthalene-1-sulfonate fluorescence. *Biochem. Mol. Biol. Int.* 40, 235-241
- Thunissen, M.M.G.M., Eiso, A.B., Kalk, K.H., Drenth, J., Dijkstra, B.W., Kuipers, O.P., Dijkman, R., de Haas, G.H., and Verheij, H.M. (1990) X-ray structure of phospholipase A₂ complexed with a substrate-derived inhibitor. *Nature* 347, 689-691